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The Classical Singularity Theorems
and Their Quantum Loopholes
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The singularity theorems of classical general relativity are briefly reviewed. The extent
to which their conclusions might still apply when quantum theory is taken into account is
discussed. There are two distinct quantum loopholes: quantum violation of the classical
energy conditions, and the presence of quantum fluctuations of the spacetime geometry.
The possible significance of each is discussed.
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1. INTRODUCTION: THE CLASSICAL SINGULARITY THEOREMS

It has long been recognized that many solutions of Einstein’s equations contain
curvature singularities, where the equations fail. There are two cases of particular
interest: the initial singularity in cosmological models and the singularity in the
interior of a black hole. The primary example of the former is the big-bang singu-
larity at t = 0 in a Friedman–Robertson–Walker model, whereas that of the latter
is the singularity atr = 0 in the Schwarzschild solution. By the early 1960s, it was
recognized that both of these singularities posed a serious challenge to classical
general relativity. However, views differed as to whether they are an artifact of
the high degree of symmetry of the known examples, or whether they are generic
features that are to be expected even in solutions with no symmetry. Among the
proponents of the former view were Belinsky, Khalatnikov, and Lifshitz (Belinsky
et al., 1970; Belinsky and Khalatnikov, 1969; Lifshitz and Khalatnikov, 1963), who
attempted to represent the general solution of a cosmological model neart = 0 in
a power series expansion. Because lack of symmetry makes finding a generic exact
solution a formidable task, their aim was to learn as much as possible through ap-
proximate solutions. A totally different approach was taken by Penrose, Hawking,
and others. This was the development ofglobal techniques. These techniques allow
one to prove, under certain assumptions, singularity theorems. These theorems are
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now generally accepted as proving that singularities are indeed generic and not
artifacts of symmetry. Here I will attempt to give only a very brief summary of
global techniques. For more information, see the books by Hawking and Ellis
(1973) and Wald (1984).

There are a variety of singularity theorems, but they typically make four
classes of assumptions:

• A classical spacetime obeying Einstein’s equations. This simply says that
we are working in the framework of classical general relativity theory.
• A stress tensor which satisfies anenergy condition. Some restriction on

the stress tensor is usually essential (Bordeet al., 2001)2 because every
spacetime is a solution of Einstein’s equations withsomestress tensor.
• Some assumptions, such as the existence of a trapped surface, which specify

the type of physical situation being discussed. These assumptions are also
essential, as there are many nonsingular exact solutions of the Einstein’s
equations, such as those which describe static stars.
• An assumption concerning global behavior, such as an open universe which

is globally hyperbolic.

Here are some examples of the energy conditions on the stress tensorTµν

that might be assumed in the proof of a singularity theorem:

1. The strong energy condition. (Tµν − 1
2gµνT)uµuν ≥ 0, for all timelike

vectorsuµ. HereT = Tµ
µ . In the frame in whichTµν is diagonal, this

condition implies that the local energy densityρ plus the sum of the local
pressurespi is nonnegative:ρ +∑i pi ≥ 0, and thatρ + pi ≥ 0 for each
pi . This condition certainly holds for ordinary forms of matter, although
it can be violated by a classical massive scalar field.

2. The weak energy condition.Tµνuµuν ≥ 0, for all timelike vectorsuµ. This
condition requires that the local energy density be nonnegative in every
observer’s rest frame. Again this seems to be a very reasonable condition
from the viewpoint of classical physics.

3. The null energy condition.Tµνnµnν ≥ 0, for all null vectorsnµ. This
condition is implicit in the weak energy condition. That is, if we assume
the weak energy condition, then the null energy condition follows by
continuity asuµ approaches a null vector.

4. An averaged weak energy condition.
∫

Tµνuµuνdτ ≥ 0, for all timelike
geodesics, where the integral is to be taken along either an entire geodesic
with affine parameterτ , or a half-geodesic. These integral conditions are
clearly weaker than the weak energy condition. It is now possible for

2 These authors prove a singularity theorem to the effect that inflation cannot be eternal to the past,
using only kinematical arguments but no assumptions on the stress tensor.
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the local energy density to be negative in some regions, so long as the
integrated energy density is nonnegative.

5. An averaged null energy condition.
∫

Tµνnµnνdλ ≥ 0, for all null
geodesics, where nowλ is the affine parameter.

A key result which is used to link the energy conditions to the properties of
spacetime is the Raychaudhuri equation for the expansionθ along a bundle of
timelike or null rays. It takes the form

dθ

dτ
= −Rµνuµuν + (other terms), (1)

whereuµ is the tangent vector to the rays,Rµν is the Ricci tensor, and the “other
terms” can be arranged to be nonpositive. If the stress tensor satisfies the strong
energy condition, then the Einstein equations,

Rµν = 8π

(
Tµν − 1

2
gµνT

)
, (2)

imply that

dθ

dτ
< 0. (3)

This is the condition that the bundle of rays is being focused by the gravitational
field, and is consistent with our intuition that gravity is attractive.

The basic strategy to prove a singularity theorem is essentially the following:
one assumes an energy condition and infers the presence of focusing. This is
then combined with additional assumptions to infer the existence of extremal
length geodesics. An example would be a timelike geodesic which ends in a finite
proper time. Finally, one infers the existence of a singularity by the existence of
nonextendible geodesics. The basic idea is that if spacetime is nonsingular, all
geodesics should be extendible over an infinite range of affine parameter.

The first theorem to be proven was Penrose’s theorem (Penrose, 1965) which
implies that singularities must arise when a black hole is formed by gravitational
collapse. In addition to some technical assumptions, the proof of this theorem relies
upon an energy condition and on the assumption of the existence of a trapped sur-
face. Such a surface arises when the gravitational field of the collapsing body
becomes so strong that outgoing light rays are pulled back toward the body.
Penrose’s original proof assumed the weak energy condition, but later authors
(Borde, 1987; Galloway, 1981; Roman, 1988; Tipler, 1979) were able to provide
proofs of this and other theorems that assume only an averaged energy condition on
half-geodesics. The essence of the theorem is that so long as either of these energy
conditions is obeyed, once gravitational collapse proceeds to the point of forma-
tion of a trapped surface, then the formation of a singularity is inevitable. Penrose
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has recently suggested3 that a variant of this theorem might rule out the existence
of compact extra dimensions of the sort postulated in Kaluza-Klein theories. The
basic idea is that the wrapping of light rays around the compact dimensions would
create an effect analogous to the trapped surface in gravitational collapse.

Some general comments about singularity theorems are now in order. The
global techniques used in their proofs are very general and powerful. For example,
there is no need to assume any symmetry and no need to try to solve the Einstein
equations. On the other hand, the theorems say very little about the nature of the
singularity. Penrose’s theorem proves the existence of a nonextendible geodesic.
One suspects that this must be due to the formation of a curvature singularity,
as happens in the spherically symmetric case, but there is no proof of this. The
drawback of the global methods is that they rely upon indirect arguments and proof
by contradiction. This makes them perhaps less robust against loopholes in their
assumptions, so it is necessary to examine these assumptions critically, especially
in the light of quantum effects.

2. QUANTUM LOOPHOLE # 1: VIOLATION OF THE
ENERGY CONDITIONS

It is well known that quantum effects can indeed violate classical energy
conditions, such as the weak energy condition. In particular, quantum effects can
give rise to negative local energy densities. An example of this is the Casimir
effect: the electromagnetic vacuum state between a pair of perfectly conducting
plates has an energy density of

ρ = − π2

720L4
, (4)

whereL is the plate separation and units in whichh = c = 1 are used. This violates
both the weak and the averaged weak energy conditions, as an observer between
the plates at rest observes a constant negative energy density. Interestingly, the
averaged null energy condition is not clearly violated in this case. The only null rays
which avoid hitting the plates (and hence their presumably large positive energy
density) are those which are parallel to the plates. In this case,Tµνnµnν = 0, so
the averaged null energy condition is marginally satisfied. One might wonder if
the violation of the weak energy condition by the Casimir effect is an artifact of the
assumption of perfectly reflecting boundary conditions. It has recently been shown
(Sopova and Ford, 2002) that more realistic plates with finite, but sufficiently high,
reflectivity can also produce negative local energy density. In all cases, there is an
inverse relation between the size of the negative energy region (the plate separation)
and the magnitude of the negative energy density.

3 Talk at a conference at Cambridge University in honor of Stephen Hawking’s 60th birthday, January
2002.
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A second way that quantum effects can create negative energy density is
through quantum coherence effects. One can construct quantum states in a quantum
field theory in which the local energy density is negative. The simplest example
of this is a quantum state for a bosonic field which is superposition of the vacuum
and of a two particle state for a particular mode:

|ψ〉 = N(|0〉 + ε|2〉), (5)

whereN is a normalization factor andε is the relative amplitude to measure
two particles rather than no particles in the state. In Minkowski space–time, the
local energy density is the expectation value of the normal ordered stress tensor
operator, :Ttt :,

ρ = 〈ψ | : Ttt : |ψ〉 = N2[2Re(ε〈0| : Ttt : |2〉 + |ε|2〈2| : Ttt : |2〉]. (6)

The only other piece of information that we need is that in general〈0| : Ttt : |2〉 6=
0. If we take|ε| sufficiently small, then the|ε|2 term inρ can be neglected, and
we can then choose the phase ofε so as to haveρ < 0 at a selected space–time
point. This state is essentially a limit of a squeezed vacuum state.

Although the local energy density in states such as that described above can
be made arbitrarily negative at a given space–time point, one finds that there are
two important restrictions on the negative energy density, at least for free fields in
Minkowski space–time. The first is that the total energy must be nonnegative:∫

ρd3x ≥ 0. (7)

The second is that the energy density integrated along a geodesic observer’s world-
line with a sampling functionf (τ ) must obey a “quantum inequality” of the form
(Fewster and Eveson, 1998; Ford, 1991; Ford and Roman, 1995, 1997)∫ ∞

−∞
ρ(τ ) f (τ )dτ ≥ − c

τ 4
0

, (8)

whereτ0 is the characteristic width off (τ ) andc is a dimensionless constant, which
is typically somewhat less than unity. The physical content of these inequalities is
that there is an inverse relation between the magnitude of negative energy density,
and its duration. An observer who sees a negative energy density of magnitude|ρm|
will not see it persist for a time longer than about|ρm|−1/4. This restriction greatly
limits what one can do with quantum negative energy. Macroscopic violations of
the second law of thermodynamics, which would occur with unlimited negative
energy, seem to be ruled out (Ford, 1978), for example.

Quantum inequalities have been proven under a variety of conditions to hold
in curved space–time (Flanagan, 1997; Fewster, 2000; Pfenning and Ford, 1997a,
1998), as well as in flat space–time. In particular, if the sampling timeτ0 is small
compared tor , the local radius of curvature, then the flat space form, Eq. (8), is
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approximately valid in curved space–time as well. The inequalities basically say
that the local energy density cannot be vastly more negative than about−1/r 4.
This fact has been used to place severe restrictions on some of the more exotic
gravitational phenomena which negative energy might allow, such as traversable
wormholes (Ford and Roman, 1996), or “warp drive” space–times (Pfenning and
Ford, 1997b).

The key question remains: can quantum violations of the energy conditions
avoid the singularities of classical relativity? In at least some cases, the answer is
yes. An example of this was given many years ago by Parker and Fulling (1973),
who constructed a nonsingular cosmology using quantum coherence effects to
avoid an initial singularity. These authors explicitly constructed a quantum state
which violates the strong energy condition and in which the universe would bounce
at a finite curvature, rather than passing through a curvature singularity. Further-
more, the bounce can be at a scale far away from the Planck scale. This example
shows that quantum effects can avoid an initial cosmological singularity, but leaves
open the question of whether the singularity is necessarily avoided by quantum
processes.

The case of the black-hole singularity is technically more difficult to study, and
no explicit construction analogous to the Parker–Fulling example in cosmology has
been given. However, several authors have discussed the form which nonsingular
black holes might take. Frolovet al. (1990), for example, have discussed the
possibility that the Schwarzschild geometry might make a transition to a deSitter
space–time before ther = 0 singularity is reached.

Most of the work on quantum singularity avoidance has been in the context
of a semiclassical theory, where matter fields are quantized but gravity is not.
This theory should break down before the Planck scale is reached, at which point
one would need a more complete theory. It is not clear that one can get generic
singularity avoidance in this theory far away from the Planck scale. One can give
a simple argument for this: In Planck units, quantum stress tensors typically have
a magnitude of the order of〈Tµν〉 ∼ 1/r 4, whereas the Einstein tensor is of order
Gµν ∼ 1/r 2, wherer is the local radius of curvature. The backreaction of the
quantum field on the space–time geometry is large when〈Tµν〉 ≈ Gµν , which is
whenr ≈ 1, that is, at the Planck scale. Of course, this argument does not always
hold, as the Parker–Fulling example shows. However, the reason that Parker and
Fulling were able to get a bounce well away from the Planck scale is twofold: Their
example requires negative pressure, but not negative energy density (violation of
the strong but not the weak energy condition), and their model contains a massive
field, introducing a new length scale. Thus, in their example, the violation of the
appropriate energy condition is not characterized by 1/r 4. However, the quantum
inequalities seem to suggest that one cannot get such large violations of the weak
energy condition, and that local negative energy densities in curved space–time
are likely to be of order−1/r 4.
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It should be noted that it is possible to violate energy conditions at the
classical level with nonminimally coupled scalar fields, and this fact has been
used by Saaet al. (2001) to construct nonsingular cosmologies with such fields
as the matter source. Thus if there are such nonminimal fields in nature, all
of the discussion of quantum violation of the energy conditions may be
moot.

3. QUANTUM LOOPHOLE # 2: QUANTUM FLUCTUATIONS
OF SPACE–TIME GEOMETRY

There is another, very different, loophole in the classical global analysis
which is posed by quantum effects. This is the presence of fluctuations of the
space–time geometry. These fluctuations have been discussed in recent years by
many authors (Ford, 1995; Hu and Verdaguer, 2002; Jackel and Reynaud, 1995;
Kuo and Ford, 1993; Martin and Verdaguer, 2000; Parentani, 2001; Shiokawa,
2000). There are two sources for these fluctuations. One is the fluctuations which
arise when the gravitational field itself is treated as a quantum field, which might be
called the “active” fluctuations. The second source is quantum fluctuations of the
stress tensor of a quantized matter field. Even in a theory in which gravity itself
is not described quantum mechanically, fluctuations of the local energy density
will drive fluctuations of the gravitational field. The presence of these fluctuations
means that the assumption of a classical space–time obeying Einstein’s equations
is not strictly valid. Light rays in general no longer precisely focus as they would
on a fixed classical space–time.

We can quantify this by treating the Raychaudhuri equation, Eq. (1), as a
Langevin equation, with a fluctuating Ricci tensor term. This can be done regardless
of the source of the fluctuations. Then one can find the dispersion inθ as an integral
of the Ricci tensor correlation function:

〈θ2〉 − 〈θ2〉 =
∫

dλ
∫

dλ′uµuνuαuβ [〈Rµν(λ)Rαβ(λ′)〉 − 〈Rµν(λ)〉〈Rαβ(λ′)〉].

(9)

In many contexts, the quantum fluctuations of the metric are expected to
be a very small effect. For example, in the collapse of a star to form a black
hole, the root-mean-square fluctuations of the Ricci tensor are likely to be very
small compared to the classical Ricci tensor of the collapse space–time, at least
until very close to the singularity. The problem for global techniques, is the in-
direct nature of the arguments, such as the reliance on exact focusing and on
proof by contradiction. Thus, even if the conclusions of the singularity theo-
rems are still correct, in the presence of fluctuations the proofs are not strictly
valid.
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4. SUMMARY

The classical singularity theorems are based on very powerful indirect argu-
ments which show that black hole and cosmological singularities are generic in
classical general relativity, meaning that the theory breaks down. This suggests
that a way to avoid this problem must be found in a new theory, such as one incor-
porating quantum effects. Quantum violations of the classical energy conditions
certainly open this possibility. However, such violations tend to occur on short
distance scales, or at high curvatures. Furthermore, one may need to go beyond
a semiclassical theory to a more complete quantum theory of gravity in order to
understand how quantum theory avoids singularities.

The presence of fluctuations also poses a challenge for global techniques, with
their reliance on exact focusing. Yet it is hard to see why a very small fluctuation
would qualitatively change the behavior of a gravitational field. Thus, it may well
be that small quantum fluctuations do not prevent large curvatures from being
reached in the early universe or inside a black hole. However, to prove this one
will need new methods.
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